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Based on the quasi-lattice concept, a simple model is proposed for calculating the quantities of 
mixing of strong electrolyte solutions over the whole concentration range from pure solvent 
to pure salt. This model is analogous to the regular solution model for non-electrolyte systems. 
Relationships for the activity coefficients of the solvent and salt have been derived, and the be
haviour of the model in the limit of infinite dilution is discussed by comparison with the Debye
-Huckel theory. The adequacy of equations derived from the proposed model has been tested 
by fitting published experimental data for the activities of water in the systems (Li, K)N03-H2 0 
and (Ag, TI)N03-H2 0, which have been measured over the whole concentration range. 

In analyzing experimentally determined phase diagrams 1 , complications arise if one 
component is a polar solvent and the other a salt which dissociates in the system 
into the ions. In this case, the regular solution model is not applicable, and the 
Debye-Hiickel theory, which was derived for this type of system, is limited to dilute 
solutions. 

The aim of this paper is to propose a simple model analogous to the model of 
regular solutions, but taking into account the nature of the species present in the 
system and permitting extrapolation over the whole concentration range, i.e. from 
the pure solvent to pure salt. 

The problem has been treated by several workers, but no satisfactory solution has 
been obtained. Pitzer2 used the simple equation of van Laar and modified it by 
adding the Debye-Hiickel term in seeking to obtain a better agreement in the region 
of dilute solutions. Another approach has its origin in the fundamental work of 
Stokes and Robinson3 , who started from a model of multilayer hydration of ions 
and proposed an equation for the activity of water strongly resembling the BET 
adsorption isotherm (see p. 1876 of ref. 3). Unfortunately, their equation is not 
capable of describing the behaviour of systems over the whole concentration range. 
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THEORETICAL 

Basic Assumptions of the Model 

For simplicity, we shall consider systems of completely dissociating salts made up 
of singly charged ions: 

R-MA, 

where R denotes the polar solvent and MA represents the salt dissociating into M+ 
and A-ions. 

The system composition will be expressed exclusively in the mole fraction terms. 
Molalities or other concentration units cannot be used if one aims at extending 
the validity of the model up to pure salts. 

We also consider as inconsistent the use of the term the mole fraction "on an 
ionized basis", introduced by some workers. In our approach we replace it by the 
concept of the activity in an ideal mixture4 (see below), which appears to be more 
appropriate and rigorous from the thermodynamic point of view. 

Let us consider N ion pairs M+ A - (Ns = NM = NA) and NR particles of solvent, 
i.e. a total of N = Ns + NR. The mole fraction of the salt is then x = Ns/N and the 
mole fraction of the solvent, 1 - x = NR/N. 

To proceed further, we need to express the energy of all interactions between the 
species in the system. In principal, the interaction energy is composed of contribu
tions from the RR, MR, AR, MA, AA, and MM pairs. Thus, it is necessary to deter
mine the numbers of the various pairs. Here the concept of the quasi-lattice model 
with two interpenetrating sublattices, one for cations and one for anions, has proved 
useful. As previously4, we consider that the solvent particles enter the two sublattices 
in the ratio of the stoichiometric coefficients of the ions, in the present case in the 
ratio 1 : 1. 

The numbers of sites of the cationic and anionic sublattices are thus NM + NR/2 
and N A + NR/2, respectively. The probability of finding a particle M at a site of the 
cationic sublattice is then 

NM X 2x 
PM= = =--. 

NM + NR/2 x + (1 - x)/2 1 + x 
(1) 

The probability of finding a particle R at a site is 

_ NR/2 _ (1 - x)/2 _ 1 - X 
PR- - ---. 

NM + NRJ2 x + (1 - x)J2 1 + x 
(2) 

The relationships for the other sublattice are obtained in an analogous manner, and 
we find that P A = PM. 
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R-R Interactions 

Because of short-range forces cetween the solvent particles, the predominant inter
actions are those between nearest neighbours R and these are particles belonging 
to different sublattices. The number of pairs of neighbouring particles R is given 
by the product of the number of all sites of a sublattice, the coordination number z, 
and both the probabilities of finding the particles R at the sites of the sublattices: 

(3) 

M-R and A-R Interactions 

o wing to the nature of the forces eetween the ions and the polar molecules of the 
so lvent, the predominant interactions are again those between nearest neighbours, 
i.e. between an ion from one sublattice and a solvent molecule from the other sub
lattice. The number of pairs is given by 

! zN 2x(1 - x) 
n MR = z(Ns + NR 2) PMPR = - -'-----"-

2 1 + x 

x(I - x) 
n MR = nAR = zN---. 

1 + x 
( 4) 

M-A, M-M, and A-A Interactions 

Th ese are Coulomb interactions bet ween ions. In the case of the MA interactions, we 
mu st take into account the rq:ulsion between the electron shells of the ions in inti
ma te contact. The main problem here is that the Coulomb forces are long-range 
in nature and it is therefore nfcessary to consider a large number of interactions. 
For a pure crystal (here for x = 1), the Coulomb interaction energy is calculated 
as a series whose sum is called the Madelung constant, AM, its value depending on 
the type of the lattice: 

(5) 

where r is the shortest distance between M+ and A -. 

In our case where the ionic lattice is diluted by particles R, we may invoke a pic
ture in which randomly districuted ions are again arrangfd in a regular lattice but 
with a proportionately larger spacing r'. The proportionality constant k (r' = kr) 
is apparently related to the density of the ions, 
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1 (1 + X)1/3 
k = (PM)1/3 = 2;- (6) 

If the energy of the Coulomb interactions between the ions of the ionic crystal 
lattice is 

(7) 

the energy of the "dilute" lattice may be estimated as 

(8) 

To make sure that the concept of regularly disposed ions in the so-called "dilute 
quasi-lattice" does not introduce an error into the model (especially as regards the 
magnitude of the exponent in Eq. (8», we made a test by the Monte Carlo method. 
For a given number of particles in the lattice, we generated random configurations 
and averaged the values of the potential energy. The obtained dependence of the 
average energy on x confirmed the correctness of the exponent in Eq. (8). 

The Quantities of Mixing 

In deriving the quantities of mixing, we start from the following simple relationship 
for the zero approximation to the partition function Q of regular solutionss : 

Q = Wexp (-E/kT) , (9) 

where W is the number of possible configurations, and E is the energy of all intee 
actions between the particles in the system. In the classical manner, we obtain 

F = - kTln Q = - kTln W + E . (10) 
The free energy of mixing is 

!iF = F - FR(l - x) - Fsx = -kTln W + E - FR(1 - x) - Fsx. (11) 

Identifying the term - kTln W with the ideal free energy of mixing, !iF·, and putting 
G = F while neglecting the volume changes, we get 

(12) 
where 

(13) 
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Substituting FR = eRRzNj2 and Fs = eMAN and using the relationships derived 
in the preceding section for the number of pairs nii , we obtain 

AGE = BRRZNj2[(1 - xYj(1 + x) - (1 - x)] + (BMR + eAR)' 

. zNx(1 - x)j(1 + x) + BMANx{[2xj(1 + X)]1/3 - I} = 

= zN(eMR + eAR - eRR) x(1 - x)j(l + x) + NeMAx{[2xj(1 + X)]1/3 - I}. (14) 

Denoting the constants involving so far unknown contributions from individual 
interactions as interaction parameters Ll and L z, we obtain the final form for the 
excess Gibbs energy 

AGE = L1X(1 - x)/(1 + x) + L1X{[2x/(1 + X)]1/3 - I} . (15) 

The first term is similar in form to the AGE of regular solutions [Lx(1 - x)]. It can 
readily be seen that Eq. (I5) becomes zero at the boundary points (x = ° and x = 1). 
The dependences of the functions contained in the final expression on the mole 
fraction are shown in Fig. 1, along with the dependence of the function x(1 - x) 
which constitutes AGE of regular solutions. 

An analogous approach was used to derive a more general relationship for the 
excess Gibbs energy of a salt system with an arbitrary number of ions, R-MpAq, 

AGE = L1X(1 - x)/(vx + I - x) + L1x{[vx/(vx + I - X)]!/3 - 1} , (16) 

where 
v=p+q. 

Activity Coefficients 

From Eq. (15) for the excess Gibbs energy satisfying at the boundary points, we 
obtain in a straightforward manner the activity coefficients for the two components: 

In YR = LI2x2/(1 + X)2 - L2 [2x/(1 + X)]4/3j6 (17) 

In Ys = L1(1 - xYj(1 + X)2 + L2{[2x/(1 + X)]!/3 (4 + 2x)/(3 + 3x) - I}. (18) 

The dependences of the component functions contained in the two equations on the 
mole fraction are represented in Figs 2 and 3, along with those for regular solutions. 
The shape of the function corresponding to the electrostatic contribution explains 
the typical shape of the activity coefficient against concentration plot for electrolyte 
systems, with sign reversal in the region of dilute solutions. 

If the limit as x --+ 0, i.e. as pure solvent is approached, is taken of the expression 
for the activity coefficient of water, a polynomial with the powers x2 and X4/3 is 
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obtained. This explains the previously observed empirical paradox that, when 
activity coefficients of water obtained from phase diagrams are fitted to empirical 
polynomials, the term in Xl is statistically significant, though from the physical point 
of view its occurrence in the polynomial is ruled out (it has no counterpart in the 
expression for AGE). This is due to the existence of the term in X4/3 , which is close 
to Xl. 

Taking the limit as x -+ 0 of the equation for the activity coefficient of the other 
component, the salt, the second term becomes an expression containing X l/3 • This 
may seem to be in conflict with the generally accepted "x l/2_power law" derived 
from the Debye-Hiickel theory. This contradiction may be discussed as follows. 
Besides the Debye-Hiickel theory of strong electrolyte solutions, there are others 
based on different assumptions which in the limit of x -+ 0 lead to the dependence 
on X I / 3 (ref. 6). An attempt to resolve this problem on the basis of experimental 
data reveals that the exponents 1/3 and 1/2 are statistically indistinguishable owing 
to errors in the data. 

Verification of the Model 

A check of the applicability of the proposed equation (17) to actual experimental 
dat,a was made for two systems which are liquid over the whole concentration range 
from the pure solvent to pure salt, namely for (LI, K)N0 3-H20 at 100°C (reC) and 

,') ~) 

I 
I 

a 

L --. ~.c------1 o ---- 05 W 

FlU. I 

The excess Gibbs energy and its contribu
tions as a function of the mole fraction of 
salt; a regular solutions. y = x(l - x); 
b Eq. (15). y = x(l - x)/(l + x); cEq. (15). 
y- x{!2x/(I + x)]1/3- I} 
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FIG. 2 

The activity coefficient of solvent and its 
contributions as a function of the mole 
fraction of salt; a regular solutions. y = x 2 ; 

b Eq. (17). y = 2x2 /(1 + xl; cEq. (17). 
y =~ - [2xl(1 + x)]4/3/6 
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119°C (ref. 8), and (Ag, TI)N03-H20 at 98°C (ref. 9). For purely practical reasons 
(depression of the salt melting point), salt mixtures were employed so that, strictly 
speaking, the systems were not binary but only pseudobinary. Our interest is, how
ever, centred mainly on the activity of water determined from vapour pressure 
measurements. 

Published data on water activity were first converted to activity coefficients by 
means of the relationship}' = a/a*, with the water activity in the ideal mixture, a*, 
calculated from the general equation4 (v = 2) 

a* = (1 - x)/(vx + 1 - x) = (1 - x)/(1 + x), 

where x is the stoichiometric mole fraction of saIto A regression method was then 
used to adjust the interaction parameters in Eq. (17). The results were as follows. 

(Li, K)N03-H20: Ll = -1·086 L2 = -1·268 

(Ag, Tl)N03-H20: Ll = 3·615 L2 = -2·364 

The interaction parameter L2 , which represents the electrostatic contribution to 
the total energy, is of negative sign in both cases, whereas L l , which incorporates 

Inr· 
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FIG. 3 

The activity coefficient of salt and its con
tributions as a function of the mole fraction 
of salt; a regular solutions, y = (1 - x)2; 
b Eq. (18), y = (1 - x)2/(l + x)2; cEq. 
(18), y = [2x/(l + x)]1/3 (4 + 2x)/(3 + 3x)
- 1 
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FIG. 4 

A plot of activity coefficients of water, cal
culated from experimentally determined 
activities of water in the systems a (Ag, TI) 
N03-H2 0 (ref.9 ) and b (Li, K)N03-H2 0 
(refs 7,8), against the mole fraction of salt. 
Comparison with regression curves according 
to Eq. (17) 
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the sum of all contributions from short-range forces, is posItIve in one case and 
negative in the other, in accord with the observation that the two systems behave 
in the opposite way as far as deviations from Raoult's law are concerned. 

The fit of experimental data to the regression curve (Fig. 4) is very good considering 
the simplicity of the starting assumptions and the comparability with the regular 
solution model, which has not proved to be very accurate in practical use. It should 
be noted that for the system (Ag, Tl)N03-H20, for example, the BET equation is 
only adequate over the range of x from 0·1 to 0·7. 
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